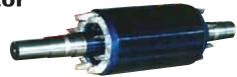


Cast Iron Frame Construction Low and Medium Voltage Motors

21-FII Series

Meets World Wide 21-FII Series



Technical Features / Benefits:

-) High performance reduces cost of ownership
- Compact size reduces cost of installation
- New casting construction provides low noise and lower vibration
- High quality insulation system provides mechanical rigidity and electrical reliability

1 Highly-Reliable Aluminum Die Cast Rotor

Expanded range of applications for an aluminum die cast rotor. This rotor construction has resulted in greater capacity, high reliability, high frequent starting duty and lower rotor inertia.

2 Expansion of cast iron fin frame

Improved ventilation flow and higher efficiency result in greater frame size capacity.

3 Improved bearing maintenance

Improved bearing housing construction and a longer bearing re-greasing interval lengthened to twice that of our other series motors result in less maintenance and improved performance.

Motors with ball or roller bearings are equipped with grease supply nipple discharge devices for easy grease exchange.

Re-greasing can be done easily and safely while the motor is operating; grease inlet nipples are located on the side of the bearing housing of the frame; grease is discharged into the cassette. The pull-out direction of the grease discharging device (cassette) can be changed if necessary.

4 Main terminal box

The main terminal box is located on top of the motor frame; cables can be connected at every 90° or 180° angle. Sufficient space for easy incoming cable connection is provided. The terminal box can be mounted on a slant (left and right) when required for side mount cable entry.

Market Needs

Output	37kW(50HP)~1400kW(1850HP)
Poles	2P*~10P
Voltage	up to 6600V
Enclosure	TEFC
Frame size	250~500(IEC basis)
Thermal class	F

^{* 2} pole motor is not applied to more than 400 frame size.

5 Highly efficient ventilation and cooling construction

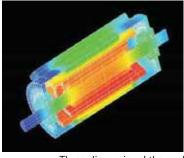
Using three-dimensional thermal conduction analysis tools, efficiency and ratings have been optimized for each frame size. This analysis enables us to provide a compact size motor with higher efficiency.

6 Compact size

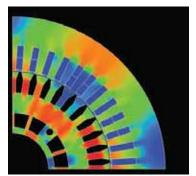
Improved cooling reduces the machine size.

21-FII series motors are easy to install and transport, with a small footprint.

Quiet operation


Quiet operation is achieved through improved cooling and magnetic field analysis. We provide low noise and low-vibration machines.

Quality-certified by third parties

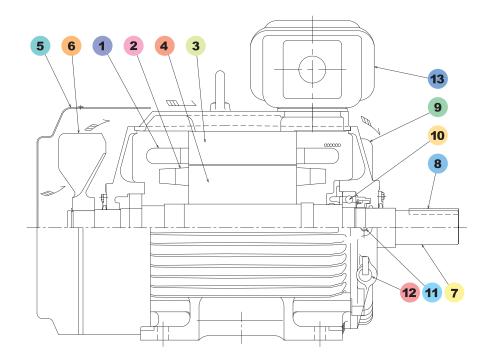

The 21-FII series motors are manufactured to meet ISO9001 and ISO14001, and have been certified by third parties such as LLoyd's, Baseefa, CSA, etc.

9 Meets international standards

Meets international standards such as IEC, NEMA, BS, AS, etc. Degree of protection is available for IP44 to IP55.

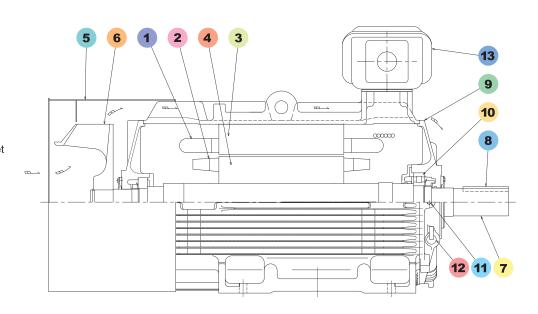
Three dimensional thermal conduction analysis

Magnetic field analysis



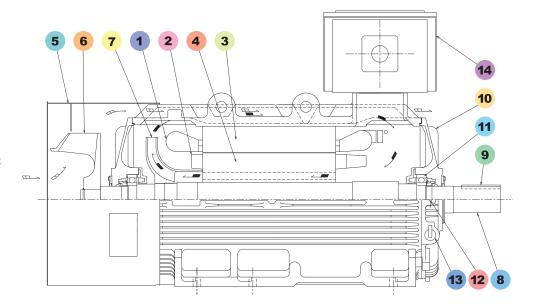
GENERAL CONSTRUCTION

Frame size 250SA~280MD

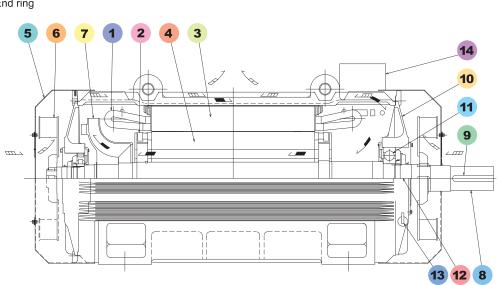

Part No. Part Name

- 1 Stator coil
- 2 End ring
- 3 Stator core
- 4 —Rotor core
- 5 Fan cover
- 6 External fan
- **7** Shaft
- 8 Shaft end key
- 9 Bearing bracket
- 10 Bearing
- 11 Grease inlet
- 12 Grease outlet
- 13 Terminal box

Frame size 280L

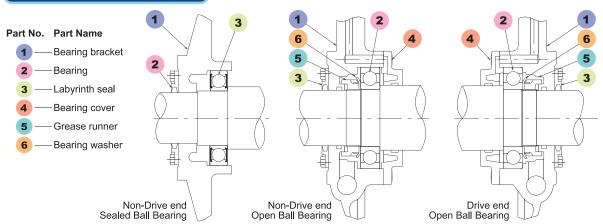

- Stator coil
- 2 —End ring
- 3 Stator core
- 4 Rotor core
- 5 Fan cover
- 6 External fan
- 7 Shaft
- 8 Shaft end key
- 9 Bearing bracket
- 10 Bearing
- 11 Grease inlet
- 12 Grease outlet
- 13 Terminal box

Frame size $315H\sim450$


Part No. Part Name

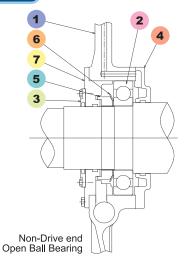
- 1 Stator coil
- 2 End ring
- 3 Stator core
- 4 Rotor core
- 5 Fan cover
- 6 External fan
- 7 Internal fan
- 8 Shaft
- 9 Shaft end key
- 10 Bearing bracket
- 11 Bearing
- 12 Grease inlet
- 13 Grease outlet
- 14 Terminal box

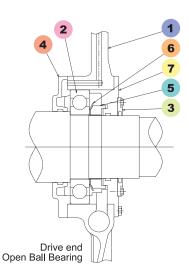
Frame size 500


- 1 Stator coil
- 2 Short-circuit ring / End ring
- 3 Stator core
- 4 Rotor core
- 5 Fan cover
- 6 External fan
- 7 Internal fan
- 8 Shaft
- 9 Shaft end key
- 10 Bearing bracket
- 11 Bearing
- 12 Grease inlet
- 13 Grease outlet
- 14 Terminal box

BEARING ARRANGEMENTS

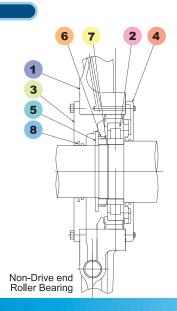
Bearing Construction of Grease Lubricating Type Anti-friction Bearings (for Direct Coupled)

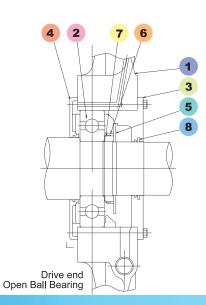

Frame size 250SA~315H



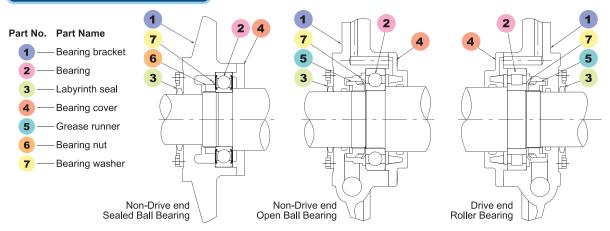
Frame size 355H~450

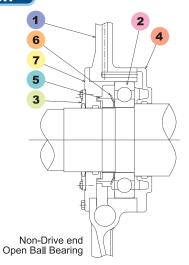
Part No. Part Name

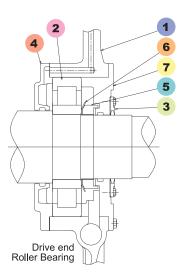

- Bearing bracket
- 2 Bearing
- 3 Labyrinth seal
- 4 Inner bearing cover
- 5 Grease runner
- 6 Bearing washer
- 7 Outer bearing cover

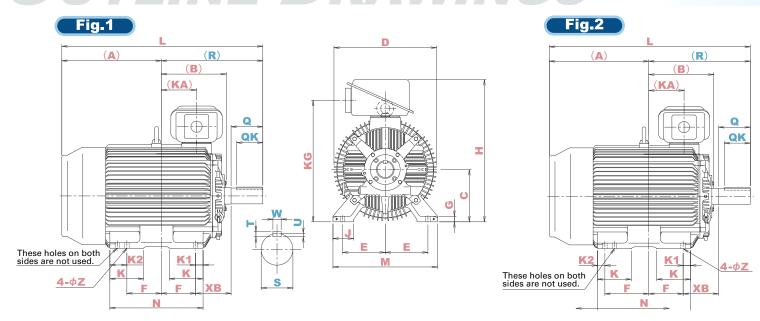


Frame size 500


- Bearing bracket
- 2 Bearing
- 3 Outside oil seal
- 4 Inside oil seal
- **5** Grease valve
- 6 Bearing nut
- 7 Bearing washer
- 8 Packing


Bearing Construction of Grease Lubricating Type Anti-friction Bearings (for Belt Drive)


Frame size 250SA~315H


Frame size 355H~400H

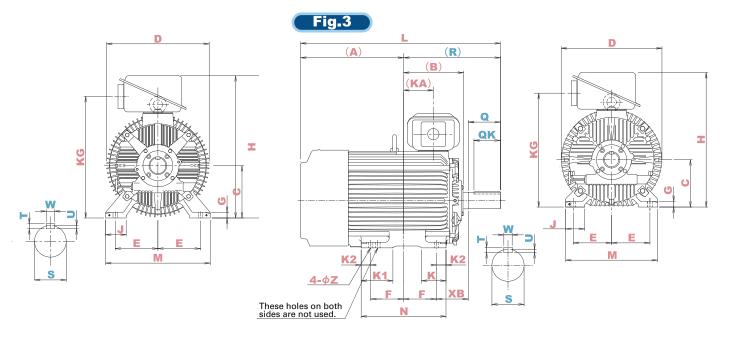
- Bearing bracket
- Bearing
- 3 Labyrinth seal
- 4 Inner bearing cover
- **5** Grease runner
- 6 Bearing washer
- Outer bearing cover

OUTLINE DRAWINGS

Dimensions for Totally Enclosed Fan Cooled Type (TEFC)

_	Poles	Voltage	Fig.No.	Dimensions												
Frame size				A	В	C*1	D	E	F	G	Н	KA	KG	J	K	K1
250SA	2P 4P~	Low & High	Fig.1	486.5 468.5	298	250	490	203	155.5	30	692	138.5	583	100	168	50
250MA	2P 4P~	Low & High	Fig.2	467.5 449.5	317	250	490	203	174.5	30	692	157.5	583	100	168	50
250MD	2P 4P~	Low & High Low High(3kV)	Fig.3	545.5	317	250	535	203	174.5	30	712	157.5	603	100	130	168
280SA	2P 4P~	Low & High	Fig.1	550 532	348.5	280	550	228.5	184	30	762	189	653	110	181	40
280MA	2P 4P~	Low & High	Fig.2	524.5 506.5	374	280	550	228.5	209.5	30	762	214.5	653	110	181	40
280MD	2P 4P~	Low & 3kV	Fig.3	596.5	374	280	587	228.5	209.5	30	782 ^{*9}	210.5	673 ^{*9}	110	130	181
280L*5	2P 4P~	Low & 3kV	Fig.4	886.5 828.5	393	280	640	228.5	228.5	30	822 ¹⁰	214.5	713 ^{*10}	110	160	160
315H*6	2P 4P~	Low & High	Fig.5	939 881	541.5	315	707	254	355	35	996	306	840	130	175	428
355H* ⁷	2P 4P~	3kV∼	Fig.5	976	669	355	764	305	450	40	1076	434	920	160	190	460
400H*8	4P ∼	3kV∼	Fig.5	1060	745	400	900	343	500	40	1166	510	1010	165	230	420
450	4P~	3kV∼	Fig.5	1174	801	450	950	375	500	40	1270	566	1114	200	280	280
500	4P ∼	3kV∼	Fig.6	1175	1195	500	1030	475	625	40	1220	760	620	220	310	310

Note: *1 The tolerance of shaft center-hight (C) are $0\sim$ -0.5mm for 250 frame, $0\sim$ -1.0mm for 280 \sim 450 frame and -0.2 \sim -0.8mm for 500 frame.


^{*2} Shaft key and key way are in accordance with JIS B1301(1976) and B0903(1977).

Regarading about 355 and 400 frames, the shaft size and bearing size may change as per the belt specification.

^{*3} No radial clearance symbol bearing shall be CM type.

^{*4} Bearing size indicated ZZ means used sealed type bearing.

^{*5} When specified 315S or 315M frame, it is available.

							Sha	aft end	d dime	ensio	ns*2		Bearing sizes*3			
K2	L	M	N	ХВ	Z	Q	QK	R	S	T	U	W	Load side	Opp. Load side*4		
	88 920 486 4					110	90	433.5	55m6	10	6	16	6312C3	6312C3		
88		449	168	24	140	110	463.5	75m6	12	7.5	20	D.C.:6218 B.D.:NU218	6216ZZ			
	920					110	90	452.5	55m6	10	6	16	6312C3	6312C3		
50	50 ₉₃₂ 486		449	168	24	140	110	482.5		12	7.5	20	D.C.:6218 B.D.:NU218	6216ZZ		
	998 50 1028		449	168	24	110	90	452.5		10	6	16	6312C3	6312C3		
50		486				140	110	482.5		12	7.5	20	D.C.:6218	6217ZZ		
	1058					170 140		512.5		14	9	22	B.D.:NU218			
	1034				24	110	90	484	55m6	10	6	16	6312C3	6312C3		
91	1076 560	560	499	190		170	140	544	85m6	14	9	22	D.C.:6220 B.D.:NU220	6216ZZ		
	40 1034 560				24	110	90	509.5	55m6	10	6	16	6312C3	6312C3		
40		560	499	190		170	140	569.5	85m6	14	9	22	D.C.:6220 B.D.:NU220	6216ZZ		
	1106					110	90	509.5	55m6	10	6	16	6312C3	6312C3		
40	1166	560	499	190	24	170	140	569.5		14	9	22	D.C.:6220 B.D.:NU220	6217ZZ		
	75 1415 560		607	190	24	110	90	528.5		10	6	16	6312C3	6312C3		
75		560				170	140	588.5		14	9	22	D.C.:6220	6217ZZ		
	1457					210	170	628.5		16	10	28	B.D.:NU324	6220		
	80 <u>1622</u> 636		870			140	110	711	65m6	11	7	18	6214C3	6214C3		
80				216	28	170	140	741	95m6	14	9	25	D.C.:6220	6220		
	1662					210	170		125m6	18	11	32	B.D.:NU326			
00	1820	90 710	1060	254	28	140	110	844	75m6	12	7.5	20	6216C3	6216C3		
	1890 1930					210 250	160 200	914 954	110m6 130m6	16 18	10 11	28 32	D.C.:6224C3 B.D.:NU328	6224C3		
	2050			280	35	210	160		120m6	18	11	32	D.C.:6228C3			
110	2090	800	1220			250	200		130m6	18	11	32	B.D.:NU328	6228C3		
140	2259	950	1280	335	42	250	200		130m6	18	11	32	D.C.:6228C3	6228C3		
180	2720	1120	1610	670	48	250	224	+	130m6	18	11	32	D.C.:6328C3	NU228		
			.0.0	3, 0	10			,0,0	. 300			<u> </u>				

Note: *6 When specified 315L(2F=508) frame, it is available.

- *7 When specified 355L(2F=630) or 355J(2F=800) frame, it is available.

- *8 When specified 400K(2F=800) frame, it is available.

 *9 When supply voltage is 6kV class, then dimensions H and KG becomes H=877mm and KG=721mm.

 *10 When supply voltage is 6kV class, then dimensions H and KG becomes H=917mm and KG=761mm.

D.C. maeans Direct Coupled, B.D. means Belted Drive.

These data given in this table are subject to change without notice.

OUTLINE DRAWINGS

Fig.4

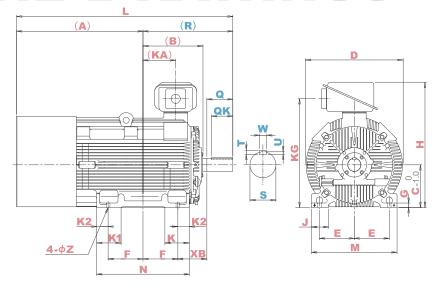


Fig 5

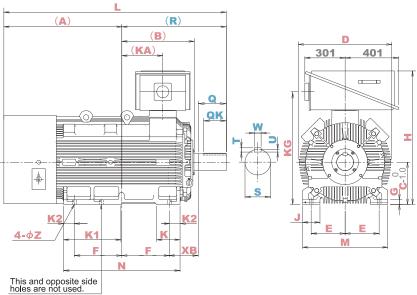
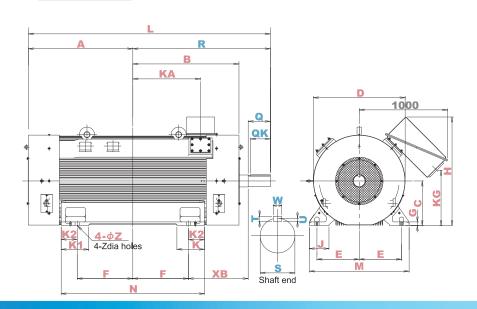
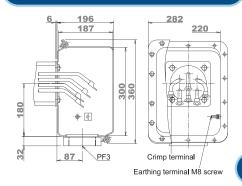
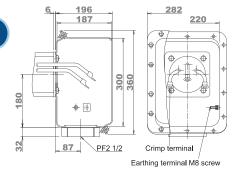
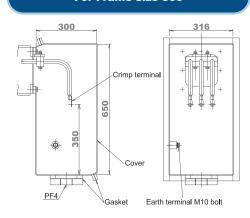
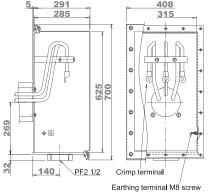




Fig.6


For low voltage and Frame size 280L and smaller


For 3kV class and Frame size 280L and smaller

For low voltage and Frame size 315H



For Frame size 500

3kV class and Frame size $315H\sim450$, 6kV class and Frame size $280L\sim450$

21-FII in detail

TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION, Tokyo, Japan

Tel.: +81-3-5444-3828, www.tmeic.co.jp

TMEIC Corporation, Roanoke, Virginia, USA

Tel.: +1-540-283-2000; info@tmeic.com, www.tmeic.com

TMEIC Corporation, Houston Branch, Texas, USA Tel.: +1-713-784-2163, OilGas@tmeic.com, www.tmeic.com